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A Lagrangian vortex method for unbounded flows
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SUMMARY

A technique is presented for velocity calculations on the highly distorted node distributions typical of those
found in Lagrangian vortex methods. The method solves the partial differential equation for streamfunction
directly on the nodes, via a sparse, symmetric system of equations that can be solved using standard
iterative solvers. When implemented in a triangulated vortex method, the technique gives computation
times which scale as N 1.23, where N is the number of nodes. The computation scheme is derived for
two-dimensional problems and applied to the prediction of the evolution of perturbed multipolar vortices.
Due to the numerical performance of the method, it has been possible to examine such evolution at higher
and lower Reynolds numbers than have been considered in published numerical studies. Copyright q
2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Lagrangian vortex methods are a powerful class of adaptive techniques for the prediction of
unsteady flows [1, 2]. They work by computing the movement of vorticity, tracking marker nodes
that are transported at the local velocity. This velocity is itself a function of the global vorticity
distribution and one of the central parts of any Lagrangian vortex method—and the most compu-
tationally intensive—is the computation of the nodal velocities. This paper presents a velocity
computation method that can handle the highly distorted meshes typical of vortex methods and
that can be implemented using standard solvers for sparse, symmetric linear systems.

The two fundamental components of a Lagrangian vortex method are a discretization or inter-
polation scheme to represent the vorticity distribution in terms of the nodal values, and a velocity
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evaluation method to compute the node motion. To some degree, the choice of one conditions the
choice of the other but, on the whole, they can be considered independently. Two main approaches
exist for the calculation of velocities: evaluation of a Biot–Savart integral and solution of the partial
differential equation for streamfunction. The integral approach, which becomes a summation in
‘particle’ or ‘blob’ discretizations, is probably the most widely used, being conceptually simple
and fast. In its standard form, the computational effort is O(N 2) where N is the number of nodes
in the problem, but the use of fast multipole methods [3–5] can reduce this to O(N ).

The most common method of directly solving the partial differential equation for the stream-
function is to interpolate the vorticity distribution onto a fixed grid and solve a Poisson equation on
the grid. Nodal velocities can then be found by differencing. Two main approaches have been used:
the vortex-in-cell method [6], which interpolates onto a regular grid and the vortex-in-element
method [7] which interpolates onto an unstructured mesh. In the first case, Fourier transform-based
Poisson solvers can be used to speed the calculation, while in the second, a finite element solution
can be pre-computed and the velocity is found using a matrix multiplication.

An approach that does not seem to have been used in Lagrangian vortex methods is direct solution
of the partial differential equation on the nodes. The obvious method, a finite element solution on
the mesh formed by the nodes, would require a high-quality triangulation, which conflicts with the
adaptive nature of the solution method. Some other approaches have been developed, which can be
used for calculations on highly distorted, deforming, meshes, such as the natural element method
of Braun and Sambridge [8], the Voronoi cell finite difference method of Sukumar [9] and the
least-squares method of Baty and Wolfe [10], which has similarities to the method of this paper.
The approach was to solve, in the least-squares sense, for the coefficients of a Taylor expansion
of velocity potential about each nodal point, using an iterative scheme. There was no requirement
that the nodal distribution be high quality, making it a candidate for adaptive vortex methods, but
the computational effort was O(N 2), a drawback in applications.

In this paper, we develop a method that calculates the streamfunction and its derivatives at each
nodal point, using a standard linear solver for large sparse systems. The method is symmetric and
can be implemented for quite general partial differential equations with very few modifications. The
velocity computation is used in a triangulated vorticity scheme that has already been used in a variety
of problems [11–14]. The general approach is described below, as well as the implementation of
viscous effects and the practicalities of mesh generation and maintenance. Results are given for
the algorithm performance and accuracy and it is then applied to the problem of the dynamics of
a class of vortex instabilities.

2. NUMERICAL FORMULATION

In this section, the numerical method used to compute the streamfunction and nodal velocities
is developed. The computation is performed using a least-squares method based on the three
requirements of a valid solution to the partial differential equation for the system: the solution
must be continuous between nodes, must satisfy the equation at nodes and must meet appropriate
boundary conditions. The first of these requirements is imposed by computing the solution as the
coefficients of a Taylor series expansion about each node and requiring that the expansion about
one node match that about nearby nodes, to some order. The second requirement is imposed via
a relationship between coefficients of the power series at each node and the third is imposed by
fixing power series coefficients on boundary nodes.
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2.1. Plane flow

The well-known Helmholtz equation [15, p. 14] states that vorticity is conserved in two-dimensional
inviscid, incompressible flow:

d�

dt
=0 (1)

where the material derivative in a plane flow is

d

dt
≡ �

�t
+u

�
�x

+v
�
�y

For plane flow, position is given by coordinates (x, y), velocity is (u,v) and we adopt a Lagrangian
approach, tracking the movement of markers that carry vorticity �.

In order to compute the motion of the markers, we must compute their velocities. The most
common method is to use the streamfunction �, which is a solution of

�xx +�yy =−� (2)

where subscripts denote differentiation and the velocities are

u=�y, v=−�x (3)

Two main approaches are possible: direct solution of Equation (2) or evaluation of the Biot–Savart
integral:

�(x, y)=
∫ ∫

G(x, y; x1, y1)�(x1, y1)dx1 dy1 (4)

where Green’s function G is, for plane flow,

G(x, y; x1, y1)=− 1

4�
log((x−x1)

2+(y− y1)
2) (5)

In this paper, we adopt the approach of solving Equation (2) directly at the nodes of the vorticity
distribution, using a least-squares formulation similar to that of Baty and Wolfe [10]. The solution
Wi at node i is expressed as a vector of the derivatives of the streamfunction:

Wi =[�(i)
0 �(i)

x �(i)
y �(i)

xx �(i)
xy �(i)

yy ]T (6)

For a second-order partial differential equation in two dimensions, Wi has six components.
A solution of the streamfunction equation is made up of Wi for each node subject to continuity

of the solution between nodes and satisfaction of the partial differential equation. Considering
a node i and a neighbour node j (defined in Section 2.2), these requirements give two matrix
equations:

T (0)
i j Wi =�( j)

0 (7)

DiWi =−�i (8)
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where the left-hand side matrices are

T (0)
i j =[1 xi j yi j x

2
i j/2 xi j yi j y

2
i j/2] (9)

Di =[0 0 0 1 0 1] (10)

xi j = x j −xi , yi j = y j − yi (11)

The system of equations will be solved in a least-squares sense for all of the nodes simultaneously
(unlike the method of Baty and Wolfe [10] who iterate over nodes).

The system of equations is expressed as

A�=b (12)

where A is a large, sparse matrix made up of a combination of Di and T (0)
i j , � contains Wi for

i=0 . . .N−1 and b contains the nodal vorticities and any boundary conditions to be applied.
Considering the interaction of a node i with a neighbour node j and ignoring, for the moment,

any boundary condition at node i or j , Equations (7) can be combined to yield the single equation:

Gi jWi +Hi jW j =bi j (13)

Gi j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
T (0)
i j − x2i j

2
Di , j even

T (0)
i j − y2i j

2
Di , j odd

(14)

Hi j =[−1 0 0 0 0 0] (15)

and

bi j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x2i j
2

�i , j even

y2i j
2

�i , j odd

(16)

The definition of Gi j alternates between the two forms given to avoid inserting a row of all zeros
in the main matrix.

The matrix A is made up of 6×6 blocks so that its total size is 6N×6N . Equation (13) can be
expressed as a symmetric system and inserted as follows:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...
...

...
...

...

· · · GT
i j Gi j · · · GT

i j Hi j · · ·
...

...
...

...
...

· · · HT
i j Gi j · · · HT

i j Hi j · · ·
...

...
...

...
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...

Wi

...

W j

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...

bi jG
T
i j

...

bi j H
T
i j

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(17)
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where the 6×6 block GT
i j Gi j , for example, is inserted in rows 6i+1–6i+6 and columns 6i+1–

6i+6 of the left-hand side matrix.
To generate the system of Equations (12), we loop over all of the nodes i=0,1, . . . ,N−1. At

each node, we loop over the neighbours j and add Equation (17) to the overall system. In practice,
we can also multiply Equation (17) by a weighting factor wi j , if required.

In order to incorporate boundary conditions, the procedure is modified. As an example, we
consider the inclusion of a prescribed velocity. In such a case, the vorticity at the boundary forms
part of the solution and so the differential operator is not incorporated into the system. Instead the
stream function components are used in place of the differential operator so that Gi j and bi j are
defined:

Gi j =T (0)
i j −[0 xi j yi j 0 0 0] (18)

Hi j =[1 0 0 0 0 0] (19)

and

bi j =−x�x − y�y (20)

where �x and �y are defined using the prescribed velocity on the boundary. A similar approach can
be used to impose a streamfunction on the boundary as required in unbounded flow calculations.

After the system of equations has been assembled, the final part of imposing the boundary
conditions is to modify the rows of the matrix corresponding to boundary conditions. These rows
are cleared (set to zero) and, in the case of a velocity boundary condition, replaced with the trivial
equations:

[0 1 0 0 0 0]Wi =�(i)
x (21a)

[0 0 1 0 0 0]Wi =�(i)
y (21b)

The alternative approach of deleting rows and columns corresponding to boundary nodes has not
been adopted because this leads to variations in the size of the system of equations during a
calculation, which makes memory management and matrix updating quite awkward.

The assembly of the system of equations can be summarized in the following algorithm:

For each node i=0 . . .N−1:
If i is not a boundary node:
Calculate Di .
For each neighbour node j :
Calculate T (0)

i j .
Calculate Gi j .
If i is not a boundary node:
Evaluate Equation (13) and add to the system of equations.
Else Evaluate Equation (18) and add to the system of equations.
For each node i=0 . . .N−1:
If i is a boundary node: Insert Equations (21a) and (21b).

This sequence of steps yields a symmetric 6N×6N system of equations that can be solved
by a standard iterative technique. In this work, the stabilized biconjugate gradient method was
used [16].
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2.2. Vorticity triangulation and neighbour identification

The velocity calculation method of Section 2.1 is used in a triangulated vorticity method. This is a
technique used by a number of researchers to compute planar, axisymmetric and three-dimensional
flows [11–14, 17]. In it, a Delauanay triangulation connects the vorticity nodes and the triangulation
can then be used in extracting the required information from the vorticity distribution. In particular,
the triangulation is used in applying the boundary conditions and in extracting information about
the neighbourhood of a node.

The first part of applying boundary conditions is to identify the boundary. When a triangulation
is available, boundary nodes can be identified quite easily. The second part of applying boundary
conditions is to compute the value of the solution at boundary nodes. This is done using multipole
expansions, with the multipole coefficients ci j about some point (x0, y0) computed using the
triangulation:

ci j =
∫ ∫

(x−x0)
i (y− y0)

j�(x, y)dx dy (22)

the integration being performed over triangular elements whose nodes have vorticities above some
threshold value. The streamfunction outside the region of finite vorticity can then be computed
using the expansion:

−4�� = c00 log R
2−2(c10(x−x0)+c01(y− y0))/R

2−c20((x−x0)
2−(y− y0)

2)/R4

−c02((y− y0)
2−(x−x0)

2)/R4−4c11(x−x0)(y− y0)/R
4

R2 = (x−x0)
2+(y− y0)

2

(23)

The triangulation also provides useful information about the neighbourhood of a node. To
identify the neighbours of a node i , we begin with a list of nodes connected to node i and add
nodes connected to these ‘first-level’ neighbours. If necessary, we add nodes connected to these
nodes. The list of neighbour nodes is then sorted by distance from node i and the n closest are
chosen as the neighbours. This approach avoids using nodes that are directly connected to node i
but are not geometrically close to it.

A similar approach is used in determining the weighting function wi j . This is a Gaussian:

wi j =e−(x2i j+y2i j )/�
2

(24)

where the length scale � depends on the local mesh geometry and is a function of the edge
lengths connected to node i . A robust value for � is the arithmetic or geometric mean of the edge
lengths.

2.3. Viscosity

Another component of a Lagrangian vortex method is the computation of viscous effects. In a
plane flow, Equation (1) must be modified:

d�

dt
=�∇2� (25)
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where � is the kinematic viscosity, equal to 1/Re in non-dimensional variables. To compute the
development of vorticity, a moving least-squares method has been used to calculate ∇2�. This
is a technique that has proved robust and reliable in previous work [14, 18]. A polynomial of
the form

� j −�i =�x xi j +�y yi j +�xx x
2
i j/2+�xyxi j yi j +�yy y

2
i j/2 (26)

is least-squares fit to the vorticity at node i and its neighbours j and the coefficients of the
polynomial are then used to estimate∇2�. In practice, as in the work of Marshall and Grant [18], the
polynomial is fit to log |�| and the derivatives of � extracted using the chain rule for differentiation.
This avoids numerical problems in regions of large vorticity gradient. When � is small or changes
sign, Equation (26) is applied directly. We note at this point that in computing a viscous flow,
the prescribed velocity boundary condition of Equation (18) could be used to implement a no-slip
condition.

2.4. Node motion and mesh updating

Given the computed velocities, the motion of the nodes and the evolution of their vorticities can
be computed. The node motion is computed using a standard low-storage Runge–Kutta rule [19],
while the vorticity is updated using a forward Euler step as in the work of Russo [17].

The stability of the viscous computation depends on the time step �t and the characteristic
length scale. For simplicity, the stability criterion for a square grid [17],

��t� 1
2h

2 (27)

where h is the grid spacing, has been used. In this case, h is the minimum permissible edge length
in the mesh. As the vorticity evolves, it is periodically remeshed, using the basic operations shown
in Figure 1.

The first of these operations, edge collapsing, replaces a short edge with a single node to
stabilize the viscous computation. The second operation, edge splitting, divides a long edge
in two by inserting a new node at its midpoint. This maintains spatial resolution of the flow.
The third operation, boundary expansion, adds a new point outside the mesh boundary on the
normal to a boundary edge. This expands the mesh as viscous diffusion increases the vorticity
support.

2.5. Vorticity initialization and meshing

The initial condition for the computation is generated using an iterative method that gives a
specified vorticity distribution on a mesh of given quality to within some tolerance. The process
is shown in Figure 2 for the Lamb–Oseen vortex, whose evolution is computed in Section 3.1.

In the first stage, Figure 2(a), an initial mesh is generated using a circular boundary. The triangles
are quite poor quality so the next step is to refine the mesh using a point insertion technique
to give specified maximum and minimum triangle areas and qualities (Figure 2(b)). Finally, the
vorticity is computed at each node. In an iterative procedure, the vorticity is then interpolated at
the centroid of each triangle and compared with the exact value. If they differ by more than a
specified tolerance, a new node is inserted at the centroid with the exact value of vorticity. The
procedure is repeated until the tolerance has been met on each triangle. Since the Lamb–Oseen
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Figure 1. Basic mesh quality operations.

(a) (b) (c)

Figure 2. Iterative mesh refinement for problem initialization: (a) initial mesh; (b) mesh after Delaunay
refinement; and (c) mesh after vorticity refinement.

vortex has high vorticity in the centre of the mesh, the node density is higher here, as can be seen
in Figure 2(c).

3. PERFORMANCE

The performance of the calculation method is assessed using standard test cases for planar
viscous and inviscid flows. The criteria used are accuracy and computation time. In each case,
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Equation (12) for the streamfunction was solved using a stabilized biconjugate gradient method
for sparse matrices [16] with a solution tolerance �=10−6, where the stopping criterion is

|r |��|b| (28)

with |r | and |b| the norms of the residual and the right-hand side, respectively.

3.1. Plane flow accuracy

For plane flows, there exist exact analytical solutions that can be used to check the accuracy of
the computation method. We use the radially symmetric patch described by Perlman [20], for
which

�(x, y)=(1−R)7, R=[x2+ y2]1/2 (29)

inside the circle R=1 and zero outside. The velocity field is

(u,v)= f (R)(y,−x) (30)

with

f (R) = −(1−(1−R2)8)/16R2, R�1 (31)

= −1/16R2, R>1 (32)

The vorticity distribution remains constant over time, notwithstanding the motion of the nodes, so
that this is a simple check on the accuracy of the calculation. As an error measure, we employ
max |��|/max�, the maximum difference between the computed and exact vorticities scaled on the
maximum vorticity. The evolution of the flow is computed for 200 time steps with �t=25×10−3.

Figure 3 shows the error at the end of the calculation as a function of the number of nodes. Note
that due to the remeshing of the system, the number of nodes is not constant during the calculation,
although it does not vary much. The figure also shows the linear fit to the error, showing an error
that reduces near linearly with N , i.e. almost to second order with discretization length.

Figure 3. Evolution of Perlman’s polynomial vorticity patch: maximum error in vorticity
against number of points at the end of calculation.
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The second plane flow test is performed to check the behaviour of the viscous calculations.
Again, an exact solution is available, the Lamb–Oseen vortex described by Lamb [21, Section
334a] and by Saffman [15, p. 253]. The vorticity begins as an impulsive source of circulation �0,

�(x, y,0)=�0�(x)�(y) (33)

and it evolves over time according to

�(x, y, t)= �0

4��t
e−R2/4�t (34)

where R2= x2+ y2. Defining a Reynolds number Re� =�0/�, the evolution of the vortex is
computed from times �t=0.01 to 0.02, so that the initial peak vorticity decays to half its original
value. Figure 4 shows the exact and computed evolution of the vorticity distribution for �=0.01
(Re� =100) and Figure 5 shows the same data for �=0.001 (Re� =1000). The comparison between
the two sets of results is seen to be good in both cases.

Figure 4. Evolution of Lamb–Oseen vortex Re� =100: exact (line) and computed (circles)
solution at �t=0.01,0.015,0.020.

Figure 5. Evolution of Lamb–Oseen vortex Re� =1000: exact (line) and computed (circles)
solution at �t=0.01,0.015,0.020.
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Figure 6 shows the variation in error during the computation of decay of a Lamb–Oseen vortex
with Re� =300 and varying mesh resolution. The four curves show the error with different mean
numbers of nodes during the calculation and the improvement in accuracy with increasing node
number is clear. This point is reinforced by Figure 7, which shows the error as a function of
node number at the end of the calculation. The linear fit to the error shows it reducing as N−0.76,
corresponding to a variation with discretization length between first and second order.

3.2. Computation time

Results are now presented for the computation time required to perform a calculation. We use
Perlman’s test case [20] defined in Equation (29) and examine the time required to solve once for
streamfunction and that required to compute the evolution of a flow. Computations were performed
on an otherwise unused node of a multiprocessor cluster.

The first set of results, Figure 8, shows the computation time required to compute the stream-
function without an initial guess, equivalent to the first time step of a calculation. The best fit line
has a slope of 1.12 but this does not seem to be a very good fit to the data. Comparison with

Figure 6. Evolution of Lamb–Oseen vortex, Re� =300: error during evolution, from the top mean number
of nodes N̄ =2424,3697,6041,9348.

Figure 7. Evolution of Lamb–Oseen vortex, Re� =300: error as a function of
number of nodes at the end of calculation.
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172 C. MOUSSA AND M. J. CARLEY

Figure 8. Execution time for first time step versus number of points
for Perlman’s polynomial vorticity patch.

Figure 9. Execution time per point for evolution of Perlman’s polynomial vorticity patch.

Figure 10. Number of iterations for solution at first time step.
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Figure 11. Total number of iterations for solution.

Figure 9 shows that the computation time for multiple time steps scales as N 1.23 for this problem,
rather worse performance than might be expected from the ‘cold start’ data.

The reason for this discrepancy can be seen in Figure 10. This shows the number of iterations
required by the linear solver in computing the streamfunction for a single calculation. This shows
no clear trend with N , reflecting the scatter in Figure 8. Comparison with Figure 11 shows that
the total number of iterations in computing the evolution of the flow is more closely linked to
the number of nodes, noting that the computation time for the sparse matrix operations is roughly
linear in N . We conclude that the computation time scales as N 1.23 and that the better performance
seen in Figure 8 is a matter of chance, related to the particular configuration of the points in this
case.

4. EVOLUTION OF PERTURBED MULTIPOLAR VORTICES

The method developed in the previous sections is now applied to the practical problem of computing
the evolution of perturbed Lamb–Oseen vortices.

Unstable vortices exist in large-scale geophysical flows where they play an important role in
the transport of mass and energy. Because of their practical and theoretical importance, they have
been the subject of investigation by many researchers. In particular, the shielded or isolated vortex
has been of some interest [22–25]. This is a monopole vortex surrounded by a region of vorticity
of opposite sign with the whole structure having zero total circulation.

The evolution of unshielded vortices is still poorly understood, although it has been established
that an unbounded structure decays to axisymmetry [26]. This decay can be slow, however, and
the question of the behaviour of the structure during its evolution is important. It is known that
a stage of the evolution is the transition of a perturbed structure to a multipolar form [27–29].
Using the method of this paper, a study of the development of these perturbed vortices has been
conducted. In the following section, to demonstrate the utility of the new computational method,
the development of a Lamb–Oseen vortex perturbed by a dipolar distortion, a case not studied
before, is presented.
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4.1. Initial conditions

In the current study, a perturbed Lamb–Oseen vortex is allowed to decay freely. The initial vorticity
field � is the superposition of a Gaussian distribution �G and a disturbance �′, not necessarily
small:

�=�G +�′ (35)

where

�G = �

2��2
e−r2/2�2 (36)

�′ = ��

2��2
r2e−r2/2�2 cosm�

r2 = (x−x0)
2+(y− y0)

2

� = tan
y− y0
x−x0

(37)

with � the total circulation of the vortex, �=0.6308rc [30] and m the order of the perturbation.
Figure 12 shows the contours of the base Lamb vortex �G , a quadrupolar and a hexapolar �′.

Simulations have been carried out for different values of �, m and Re. The flow field is
represented as a circular domain of radius r =8 and discretized initially with the following criteria:
minimum and maximum triangle areas are set to Amin=0.003 and Amax=0.03, respectively, and
the error tolerance between the specified and the computed values of the vorticity is 10−4. A small
tolerance is chosen in order to have a smooth initial vorticity distribution, which leads to a finer
meshing of the non-zero vorticity area compared with the rest of the flow. These parameters were
found, after several trials, to give a satisfactory first triangulation, leading to good results. The
choice of the initial values is critical in order to obtain decent results, because a coarse mesh will
not have a smooth vorticity distribution, which will affect the evolution and decay of the vortex,
while a very fine mesh with small grid spacing will lead to numerical instability if any edge length
happens to be smaller than the characteristic length scale. The initial discretization for a vortex

+ + +

+

+

+

(a) (b) (c)

Figure 12. Vorticity contours of the (a) base Lamb vortex; (b) quadrupolar
perturbation; and (c) hexapolar �′.
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Figure 13. Initial discretization of �, m=2.

(a) (b) (c)

Figure 14. Perturbation vorticity �′, m=2 at times (a) t=0; (b) t=50; and (c) t=100.

with a quadrupolar perturbation is presented in Figure 13. The time step is set to �t=0.2 and
after every six time steps the domain is remeshed with the condition that the edge length lies
between hmin=0.07 and hmax=0.3. These values are chosen to keep the triangle areas within the
initial range. In all cases, the boundary streamfunction was kept constant to simulate the wall of
the circular tank in which experimental studies have been conducted.

4.2. Decay of an isolated perturbation

Prior to running the model for the perturbed Lamb vortex, the decay of a quadrupolar isolated
perturbation centred at the origin of the domain, x0= y0=0, was simulated in order to analyse its
evolution and decay. The Reynolds number for this case was Re=104, the circulation �=1, the
amplitude �=0.05 and the standard deviation �=21/2.

The contour plots of �′ are displayed in Figure 14 and the vorticity distribution in Figure 15 for
three different times. It is observed that the disturbance has an equilibrium state so that it decays
while conserving the symmetry of its four components, both in their shapes and their strengths,
while, due to the shear forces that the poles exert on each other, their expansion is slow. Close
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Figure 15. Vorticity distribution of the dipolar perturbation at y=0, t=0 (solid line),
t=50 (dashed line) and t=100 (dotted line).
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Figure 16. Position of poles of perturbation vorticity, ◦ positive and � negative
during the decay, time step �t=50.

inspection of the positions of the centres shows that while expanding the poles push each other
and move away, the positive ones horizontally and the negative ones vertically at equal speed. This
can be clearly seen in Figure 16. The positions of the poles are symmetrical with respect to the
centre of the domain (x0, y0)=(0,0), and the small vibrations observed in the x and y positions
are due to the discretization.
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4.3. Evolution of a Lamb vortex with a dipolar perturbation

An m=1 perturbation with strength �=0.25 was superimposed on a Lamb–Oseen vortex with
a standard deviation �=21/2 and unit circulation (�=1) for a high Reynolds number Re=104.
The number of elements in the domain at t=0 was N0=6677 but during the simulation due
to remeshing and vorticity expansion it was increased so that at t=1425 there were N f =8330
points. Figure 17 illustrates the evolution of the initial vorticity field.

The first frame shows a dipolar state: the distorted positive Lamb–Oseen vortex was flanked
by a smaller and weaker vortex of opposite sign. Due to the difference in intensities, the shear
exerted by the dominant vortex was stronger so the satellite stretched and orbited counterclockwise
around the centre while having a clockwise rotation itself. This meant that its angular velocity
was slower than that of the base vortex, which helped the axisymmetrization process. At the start,
the strong vortex was egg shaped but during the evolution its free elliptical circumference bent to
one side and at some point, due to the difference in rotation speeds, was squeezed between the
centre and the encircling vortex, as seen in frame 7 of Figure 17 (T =400). Then the vorticity was
compressed into a filament that decayed, turning the Lamb–Oseen vortex back to its base state.
The axisymmetrization of vortices through filamentation was numerically studied by Melander
et al. [31]. They showed that the edges of a smoothed Kirchhoff vortex developed during its
rotation into filaments that broke the elliptical symmetry of the vortex field and activated an
‘axisymmetrization principle’ on the structure. In the current study, the core of the main vortex

Figure 17. Evolution of a Lamb–Oseen vortex with a dipolar perturbation: m=1, Re=104 and �=0.25.
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started to become circular even before the formation of the filament but axisymmetry was not
reached until its total decay.

It is well known that an unperturbed Gaussian monopole pirouettes with zero linear momentum.
However, in this case the shear exerted by the companion vortex while stretching affected the
position of the principal one as shown in Figure 18. Primarily, the base vortex drawn by the
weak one travelled downward at a fast pace, then after a reorganization phase rotated slowly on
a circular course. This movement matched that of the satellite, which first moved down on an
elliptical trajectory due to the shape of the main vortex, then assumed a circular path due to the
effect of the axisymmetrization mechanism on the centre before being drawn closer to it as the
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Figure 18. Position of maximum � in the main vortex (◦) and minimum � in the satellite (�) during
evolution of the perturbed Lamb–Oseen (m=1) at different time steps �t=25.
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Figure 19. Decay of the satellite (m=1) on a logarithmic time scale.
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Figure 20. Absolute value of �max/�min during evolution of the perturbed vortex, m=1, �t=25.

filament separating both vortices diminished and disappeared. This is manifested by the sudden
displacement of the centre of the satellite as observed on the left-hand side of Figure 18.

The change in trajectory and speed of the positive vortex might be due to the decreasing
intensity of the small vortex during its revolution. The decay of the negative vorticity is displayed
in Figure 19 on a logarithmic time scale, which helps to see clearly the early stages of the
process. Consequently, its effect is apparent from the development of the ratio �max/�min in
Figure 20. Initially, the magnitude of the side vortex was strong enough to draw its partner towards
it (|�max/�min|=7.4), and the slow diminution phase observed in the decay curve coincides with
the early fast displacement of the main vortex. But as the slope of the declination steepened, the
effect of the negative satellite weakened, which slowed down the rotation of the central vortex.
Finally, it is worth remarking that during the evolution the satellite degenerated without mixing
with the Lamb vortex and that, based on its rotation and decay rate, it is expected that it will
stretch even further, becoming a thin filament that will gradually vanish due to viscous effects,
leaving the axisymmetric monopole as the end state.

5. CONCLUSIONS

A novel approach for the computation of velocities in two-dimensional Lagrangian vortex methods
has been presented and assessed. The method is a general approach to the solution of partial
differential equations on highly distorted meshes that can be solved using a standard iterative
solver applied to a sparse, symmetric system of equations. The method gives computation times
that scale as N 1.23 in computing unsteady flows and demonstrates good error behaviour.

The utility of the method was demonstrated by computing the evolution of a Lamb–Oseen vortex
subject to a dipolar perturbation. In this case, the base vortex decays back to its original state,
while its satellite rotates around it stretching into a filament.
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